25 research outputs found

    Balancing of parallel U-shaped assembly lines

    Get PDF
    Copyright © 2015 Elsevier. This is a PDF file of an unedited manuscript that has been accepted for publication in Computers & Operations Research (doi: 10.1016/j.cor.2015.05.014). As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Please cite this article as: Ibrahim Kucukkoc, David Z. Zhang, Balancing of parallel U-shaped assembly Lines, Computers & Operations Research, http://dx.doi.org/10.1016/j.cor.2015.05.014A new hybrid assembly line design, called Parallel U-shaped Assembly Line system, is introduced and characterised along with numerical examples for the first time. Different from existing studies on U-shaped lines, we combine the advantages of two individual line configurations (namely parallel lines and U-shaped lines) and create an opportunity for assigning tasks to multi-line workstations located in between two adjacent U-shaped lines with the aim of maximising resource utilisation. Utilisation of crossover workstations, in which tasks from opposite areas of a same U-shaped line can be performed, is also one of the main advantages of the U-shaped lines. As in traditional U-shaped line configurations, the newly proposed line configuration also supports the utilisation of crossover workstations. An efficient heuristic algorithm is developed to find well-balanced solutions for the proposed line configurations. Test cases derived from existing studies and modified in accordance with the proposed system in this study are solved using the proposed heuristic algorithm. The comparison of results obtained when the lines are balanced independently and when the lines are balanced together (in parallel to each other) clearly indicates that the parallelisation of U-shaped lines helps decrease the need for workforce significantly.Balikesir UniversityTurkish Council of Higher Educatio

    Type-E Parallel Two-Sided Assembly Line Balancing Problem: Mathematical Model and Ant Colony Optimisation based Approach with Optimised Parameters

    Get PDF
    Copyright © 2015 Elsevier. This is a PDF file of an unedited manuscript that has been accepted for publication in Computers and Industrial Engineering (doi:10.1016/j.cie.2014.12.037). The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.There are many factors which affect the performance of a complex production system. Efficiency of an assembly line is one of the most important of these factors since assembly lines are generally constructed as the last stage of an entire production system. Parallel two-sided assembly line system is a new research domain in academia though these lines have been utilised to produce large sized products such as automobiles, trucks, and buses in industry for many years. Parallel two-sided assembly lines carry practical advantages of both parallel assembly lines and two-sided assembly lines. The main purpose of this paper is to introduce type-E parallel two-sided assembly line balancing problem for the first time in the literature and to propose a new ant colony optimisation based approach for solving the problem. Different from the existing studies on parallel assembly line balancing problems in the literature, this paper aims to minimise two conflicting objectives, namely cycle time and number of workstations at the same time and proposes a mathematical model for the formal description of the problem. To the best of our knowledge, this is the first study which addresses both conflicting objectives on a parallel two-sided assembly line configuration. The developed ant colony optimisation algorithm is illustrated with an example to explain its procedures. An experimental design is also conducted to calibrate the parameters of the proposed algorithm using response surface methodology. Results obtained from the performed computational study indicate that minimising cycle time as well as number of workstations help increase system efficiency. It is also observed that the proposed algorithm finds promising results for the studied cases of type-E parallel two-sided assembly line balancing problem when the results are compared with those obtained from other three well-known heuristics

    Simultaneous balancing and sequencing of mixed-model parallel two-sided assembly lines

    Get PDF
    Copyright © 2014 Taylor & Francis. This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Production Research on 31 January 2014, available online: http://www.tandfonline.com/10.1080/00207543.2013.879618Growing interests from customers in customised products and increasing competitions among peers necessitate companies to configure their manufacturing systems more effectively than ever before. We propose a new assembly line system configuration for companies that need intelligent solutions to satisfy customised demands on time with existing resources. A mixed-model parallel two-sided assembly line system is introduced based on the parallel two-sided assembly line system previously proposed by Ozcan et al. (Balancing parallel two-sided assembly lines, International Journal of Production Research, 48 (16), 4767-4784, 2010). The mixed-model parallel two-sided assembly line balancing problem is illustrated with examples from the perspective of simultaneous balancing and sequencing. An agent based ant colony optimisation algorithm is proposed to solve the problem. This algorithm is the first attempt in the literature to solve an assembly line balancing problem with an agent based ant colony optimisation approach. The algorithm is illustrated with an example and its operational procedures and principles explained and discussed

    Integrating ant colony and genetic algorithms in the balancing and scheduling of complex assembly lines

    Get PDF
    Copyright © 2015 Springer. This is a PDF file of an unedited manuscript that has been accepted for publication in The International Journal of Advanced Manufacturing Technology. The final publication is available at: http://link.springer.com/article/10.1007/s00170-015-7320-y. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.Different from a large number of existing studies in the literature, this paper addresses two important issues in managing production lines, the problems of line balancing and model sequencing, concurrently. A novel hybrid agent-based ant colony optimization–genetic algorithm approach is developed for the solution of mixed model parallel two-sided assembly line balancing and sequencing problem. The existing agent-based ant colony optimization algorithm is enhanced with the integration of a new genetic algorithm-based model sequencing mechanism. The algorithm provides ants the opportunity of selecting a random behavior among ten heuristics commonly used in the line balancing domain. A numerical example is given to illustrate the solution building procedure of the algorithm and the evolution of the chromosomes. The performance of the developed algorithm is also assessed through test problems and analysis of their solutions through a statistical test, namely paired sample t test. In accordance with the test results, it is statistically proven that the integrated genetic algorithm-based model sequencing engine helps agent-based ant colony optimization algorithm robustly find significantly better quality solutions

    Modelling and Solving Mixed-model Parallel Two-sided Assembly Line Problems

    Get PDF
    The global competitive environment and the growing demand for personalised products have increased the interest of companies in producing similar product models on the same assembly line. Companies are forced to make significant structural changes to rapidly respond to diversified demands and convert their existing single-model lines into mixed-model lines in order to avoid unnecessary new line construction cost for each new product model. Mixed-model assembly lines play a key role in increasing productivity without compromising quality for manufacturing enterprises. The literature is extensive on assembling small-sized products in an intermixed sequence and assembling large-sized products in large volumes on single-model lines. However, a mixed-model parallel two-sided line system, where two or more similar products or similar models of a large-sized product are assembled on each of the parallel two-sided lines in an intermixed sequence, has not been of interest to academia so far. Moreover, taking model sequencing problem into consideration on a mixed-model parallel two-sided line system is a novel research topic in this domain. Within this context, the problem of simultaneous balancing and sequencing of mixed-model parallel two-sided lines is defined and described using illustrative examples for the first time in the literature. The mathematical model of the problem is also developed to exhibit the main characteristics of the problem and to explore the logic underlying the algorithms developed. The benefits of utilising multi-line stations between two adjacent lines are discussed and numerical examples are provided. An agent-based ant colony optimisation algorithm (called ABACO) is developed to obtain a generic solution that conforms to any model sequence and it is enhanced step-by-step to increase the quality of the solutions obtained. Then, the algorithm is modified with the integration of a model sequencing procedure (where the modified version is called ABACO/S) to balance lines by tracking the product model changes on each workstation in a complex production environment where each of the parallel lines may a have different cycle time. Finally, a genetic algorithm based model sequencing mechanism is integrated to the algorithm to increase the robustness of the obtained solutions. Computational tests are performed using test cases to observe the performances of the developed algorithms. Statistical tests are conducted through obtained results and test results establish that balancing mixed-model parallel two-sided lines together has a significant effect on the sought performance measures (a weighted summation of line length and the number of workstations) in comparison with balancing those lines separately. Another important finding of the research is that considering model sequencing problem along with the line balancing problem helps algorithm find better line balances with better performance measures. The results also indicate that the developed ABACO and ABACO/S algorithms outperform other test heuristics commonly used in the literature in solving various line balancing problems; and integrating a genetic algorithm based model sequencing mechanism into ABACO/S helps the algorithm find better solutions with less amount of computational effort

    A mathematical model and genetic algorithm-based approach for parallel two-sided assembly line balancing problem

    Get PDF
    Copyright © 2015 Taylor & Francis. This is an Accepted Manuscript of an article published by Taylor & Francis in Production Planning & Control on 27 April 2015, available online: http://dx.doi.org/10.1080/09537287.2014.994685Assembly lines are usually constructed as the last stage of the entire production system and efficiency of an assembly line is one of the most important factors which affect the performance of a complex production system. The main purpose of this paper is to mathematically formulate and to provide an insight for modelling the parallel two-sided assembly line balancing problem, where two or more two-sided assembly lines are constructed in parallel to each other. We also propose a new genetic algorithm (GA)-based approach in alternatively to the existing only solution approach in the literature, which is a tabu search algorithm. To the best of our knowledge, this is the first formal presentation of the problem as well as the proposed algorithm is the first attempt to solve the problem with a GA-based approach in the literature. The proposed approach is illustrated with an example to explain the procedures of the algorithm. Test problems are solved and promising results are obtained. Statistical tests are designed to analyse the advantage of line parallelisation in two-sided assembly lines through obtained test results. The response of the overall system to the changes in the cycle times of the parallel lines is also analysed through test problems for the first time in the literature

    Mathematical model and agent based solution approach for the simultaneous balancing and sequencing of mixed-model parallel two-sided assembly lines

    Get PDF
    Copyright © 2014 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in International Journal of Production Economics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Production Economics, DOI: 10.1016/j.ijpe.2014.08.010One of the key factors of a successfully implemented mixed-model line system is considering model sequencing problem as well as the line balancing problem. In the literature, there are many studies, which consider these two tightly interrelated problems individually. However, we integrate the model sequencing problem in the line balancing procedure to obtain a more efficient solution for the problem of Simultaneous Balancing and Sequencing of Mixed-Model Parallel Two-Sided Assembly Lines. A mathematical model is developed to present the problem and a novel agent based ant colony optimisation approach is proposed as the solution method. Different agents interact with each other to find a near optimal solution for the problem. Each ant selects a random behaviour from a predefined list of heuristics and builds a solution using this behaviour as a local search rule along with the pheromone value. Different cycle times are allowed for different two-sided lines located in parallel to each other and this yields a complex problem where different production cycles need to be considered to build a feasible solution. The performance of the proposed approach is tested through a set of test cases. Experimental results indicate that considering model sequencing problem with the line balancing problem together helps minimise line length and total number of required workstations. Also, it is found that the proposed approach outperforms other three heuristics tested

    Using response surface design to determine the optimal parameters of genetic algorithm and a case study

    Get PDF
    Copyright © 2013 Taylor & Francis. This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Production Research on 09 June 2013, available online: http://www.tandfonline.com/10.1080/00207543.2013.784411Genetic algorithms are efficient stochastic search techniques for approximating optimal solutions within complex search spaces and used widely to solve NP hard problems. This algorithm includes a number of parameters whose different levels affect the performance of the algorithm strictly. The general approach to determine the appropriate parameter combination of genetic algorithm depends on too many trials of different combinations and the best one of the combinations that produces good results is selected for the program that would be used for problem solving. A few researchers studied on parameter optimisation of genetic algorithm. In this paper, response surface depended parameter optimisation is proposed to determine the optimal parameters of genetic algorithm. Results are tested for benchmark problems that is most common in mixed-model assembly line balancing problems of type-I (MMALBP-I)

    Production planning in additive manufacturing and 3D printing (article)

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Accompanying dataset is available via: https://ore.exeter.ac.uk/repository/handle/10871/17360Additive manufacturing is a new and emerging technology and has been shown to be the future of manufacturing systems. Because of the high purchasing and processing costs of additive manufacturing machines, the planning and scheduling of parts to be processed on these machines play a vital role in reducing operational costs, providing service to customers with less price and increasing the profitability of companies which provide such services. However, this topic has not yet been studied in the literature, although cost functions have been developed to calculate the average production cost per volume of material for additive manufacturing machines. In an environment where there are machines with different specifications (i.e. production time and cost per volume of material, processing time per unit height, set-up time, maximum supported area and height, etc.) and parts in different heights, areas and volumes, allocation of parts to machines in different sets or groups to minimize the average production cost per volume of material constitutes an interesting and challenging research problem. This paper defines the problem for the first time in the literature and proposes a mathematical model to formulate it. The mathematical model is coded in CPLEX and two different heuristic procedures, namely ‘best-fit’ and ‘adapted best-fit’ rules, are developed in JavaScript. Solution-building mechanisms of the proposed heuristics are explained stepwise through examples. A numerical example is also given, for which an optimum solution and heuristic solutions are provided in detail, for illustration. Test problems are created and a comprehensive experimental study is conducted to test the performance of the heuristics. Experimental tests indicate that both heuristics provide promising results. The necessity of planning additive manufacturing machines in reducing processing costs is also verified

    Scheduling of distributed additive manufacturing machines considering carbon emissions

    No full text
    Additive manufacturing is a rapidly growing technology shaping the future of manufacturing. In an increasingly competitive economy, additive manufacturing can help businesses to remain agile, innovative, and sustainable. This paper introduces the multi-site additive manufacturing (AM) machine scheduling problem considering carbon emissions caused by production and transportation. A mixed-integer linear programming model is developed aiming to optimise two separate objectives addressing economic and environmental sustainability in a multiple unrelated AM machine environment. The former is the total cost caused by production, transportation, set-up and tardiness penalty and the latter is the total amount of carbon emissions caused by production and transportation. The model is coded in Python and solved by Gurobi Optimizer. A numerical example is provided to represent the basic characteristics of the problem and show the necessity of the proposed framework. A comprehensive computational study is conducted under 600s and 1800s time limits for two main scenarios and the results have been elaborated. This article introduces the concept of considering both economic and environmental sustainability caused by production and transportation, proposing the first mathematical model and measuring its performance through a comprehensive experimental study
    corecore